首页  >>  来自播客: Lex Fridman 更新   反馈

MIT 6.S094: Deep Reinforcement Learning for Motion Planning

发布时间 2017-01-22 16:34:30    来源

摘要

This is lecture 2 of course 6.S094: Deep Learning for Self-Driving Cars taught in Winter 2017. This lecture introduces types of machine learning, the neuron as a computational building block for neural nets, q-learning, deep reinforcement learning, and the DeepTraffic simulation that utilizes deep reinforcement learning for the motion planning task. INFO: Slides: http://bit.ly/2H8Fs7g Website: https://deeplearning.mit.edu GitHub: https://github.com/lexfridman/mit-deep-learning Playlist: https://goo.gl/SLCb1y Links to individual lecture videos for the course: Lecture 1: Introduction to Deep Learning and Self-Driving Cars https://youtu.be/1L0TKZQcUtA Lecture 2: Deep Reinforcement Learning for Motion Planning https://youtu.be/QDzM8r3WgBw Lecture 3: Convolutional Neural Networks for End-to-End Learning of the Driving Task https://youtu.be/U1toUkZw6VI Lecture 4: Recurrent Neural Networks for Steering through Time https://youtu.be/nFTQ7kHQWtc Lecture 5: Deep Learning for Human-Centered Semi-Autonomous Vehicles https://youtu.be/ByZF8_-OJNI CONNECT: - If you enjoyed this video, please subscribe to this channel. - AI Podcast: https://lexfridman.com/ai/ - LinkedIn: https://www.linkedin.com/in/lexfridman - Twitter: https://twitter.com/lexfridman - Facebook: https://www.facebook.com/lexfridman - Instagram: https://www.instagram.com/lexfridman - Slack: https://deep-mit-slack.herokuapp.com

GPT-4正在为你翻译摘要中......

中英文字稿